• Advertise
  • About us
  • Terms and Conditions
  • Contact us
Saturday, December 6, 2025
Australian Times News
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
Australian Times News
No Result
View All Result
Home News

Mars InSight: mission unveils surprising secrets of red planet’s interior – new research

A planet’s crust comprises a tiny fraction of its mass. But the Martian crust’s chemical and thermal interactions with the atmosphere, and with any water or ice present, helps set the conditions that determine whether life can exist there.

The Conversation by The Conversation
24-07-2021 01:31
in News
Photo by Kenan Sulayman on Unsplash

Photo by Kenan Sulayman on Unsplash

Jessica Irving, University of Bristol and Anna Horleston, University of Bristol

We may have walked on the Moon and sent probes across the solar system, but we know very little about what’s going on inside other planets. Now, for the first time, we have been able to view the interior of one, thanks to Nasa’s Mars InSight probe. The probe, which landed in 2018, is equipped with a solar-powered lander bristling with equipment, including a seismometer (a very sensitive vibration detector).

The Mars InSight lander. NASA/JPL-Caltech, CC BY-SA

The results, published in three studies in Science, throw up some unexpected findings about Mars’s interior, including a very large core.

Though Mars has no tectonic plates, the first “marsquakes” were detected within months of the probe landing. These may result from vibrations caused by meteorites hitting the surface or from processes inside the planet.

It is difficult to detect quakes on Mars, partly because the seismometer is subject to the extremes of Martian weather, with seasonally changing windy periods obscuring the data. The signals used to probe the Martian interior all come from relatively small quakes, the best among the hundreds detected so far.

Planets grow by accumulating material (accretion) early in the life of a solar system. But their interiors are not a uniform mix of these initial ingredients – they also undergo differentiation, where some lighter minerals “float” towards the surface, while heavier components like iron sink towards the planet’s centre. We expect rocky planets like Mars to have an iron-rich core, followed by a silicate layer called the mantle and an outermost skin known as the crust. Until now, how much of Mars each of these layers occupied was unknown.

Metallic heart

It’s impossible to get a sample of Mars’s core. Instead, to estimate its size, we used seismic waves (created by marsquakes). On Earth, the core’s radius was first estimated by finding its “shadow” – an area where the core disrupts the arrival of seismic waves from distant earthquakes. Our study had to rely on a particular kind of slow, sideways-travelling waves called S-waves which have been reflected back to the surface by the interface between the core and the mantle.

AlsoRead...

Ryan: Building real freedom through e-commerce

Ryan: Building real freedom through e-commerce

27 November 2025
Design Australia Group: Redefining Drafting as the engine of housing growth

Design Australia Group: Redefining Drafting as the engine of housing growth

26 November 2025

Careful seismic processing by seismologists from around the world revealed signals from six marsquakes relatively close to the probe. Combined with information from mineral physics and from seismic waves travelling through the mantle, we were able to estimate the size and density of the Martian core. This suggests that the radius is a whopping 1,830km (give or take 40km) – just over half of the planet’s radius, which is bigger than we thought.

Shear waves travel from a marsquake and reflect off the iron-nickel core. Chris Bickel/Science

The larger than expected core requires that a relatively large proportion of lighter elements must be mixing with its iron. From our work, we now know that the Martian core should contain a high fraction of sulphur and other light elements. Experiments show that liquid iron compounds containing this much sulphur are unlikely to solidify at the pressures and temperatures we expect at the centre of Mars, so it is unlikely that it has an inner solid core as Earth does. This may help us understand why there is no planet-wide magnetic field on Mars today, unlike on Earth.

Layers and layers

A planet’s crust comprises a tiny fraction of its mass. But the Martian crust’s chemical and thermal interactions with the atmosphere, and with any water or ice present, helps set the conditions that determine whether life can exist there.

In the second new study, another team investigated seismic waves which converted from P-waves, which are rapid, compressional waves, to S-waves (or vice versa) when they encountered different rocky material, and an assessment of background vibrations and gravity, to probe the Martian crust. This suggested the possible average Martian crust thickness is between 24km to 72km. This means we can rule out earlier estimates of up to about 100km.

From over 100 years of seismology on Earth, we know that beneath the thin crust lies the mantle, but the mantle itself is not uniform all the way to the core. The upper mantle and the crust, collectively known as the lithosphere, are rigid, while the lower mantle is a solid that can flow. On Earth, it is the lithospheric plates that move as part of plate tectonics, but on Mars, it is unclear what role the lithosphere plays.

To sample different depths of the mantle we can use both direct and reflected seismic waves. Direct P- or S-waves dive deep into the mantle and then return to the surface. The depth they travel down to depends on the structure of the planet and the distance from the quake to the seismometer. Reflected waves return to the surface and then dive again two or three times. A third study identified eight low-frequency marsquakes that produced both direct and reflected waves, and used these to create and test different models of the Martian crust and mantle.

By comparing the data and the models, they found that Mars’s lithosphere is between 400km and 600km thick. This is considerably thicker than any rigid layer seen in the Earth and implies that the Martian crust has a higher concentration of radioactive heat-producing elements than previously thought.

We now know more about the ingredients that went into building Mars, and that it has a very thick lithosphere, allowing our smaller sister planet to retain its internal heat. Though future astronauts won’t have to worry about the small marsquakes we used to probe the red planet, the lack of a magnetic field generated by the sulphur-rich core will mean they and their equipment will need to be more careful of the harsh solar wind.

Our new understanding of the Martian interior is part of a new era of planetary seismology, more than fifty years since the Apollo missions landed seismometers on the Moon. New seismometers will be deployed to the Moon as part of the Artemis mission, while the Dragonfly mission will place a seismometer on Saturn’s moon Titan in the mid-2030s. These experiments will help us understand more about how planets form and evolve – seeing deep into Mars is just one piece of a solar-system sized puzzle.

Jessica Irving, Senior Lecturer in Geophysics, University of Bristol and Anna Horleston, Senior Research Associate in Planetary Seismology, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tags: SB001
DMCA.com Protection Status

SUBSCRIBE to our NEWSLETTER

[mc4wp_form id=”2384248″]

Don't Miss

The evolution of Aesthetic Surgery through the lens of Dr Kourosh Tavakoli

by Pauline Torongo
4 December 2025
The evolution of Aesthetic Surgery through the lens of Dr. Kourosh Tavakoli
Health & Wellness

As global interest in Australian cosmetic surgery continues to grow, the combination of regulation, research and emerging digital tools is...

Read moreDetails

Ryan: Building real freedom through e-commerce

by Pauline Torongo
27 November 2025
Ryan: Building real freedom through e-commerce
Business & Finance

Ryan’s greatest achievement isn’t any single business or revenue milestone — it’s the ecosystem he’s built through the Change community.

Read moreDetails

Design Australia Group: Redefining Drafting as the engine of housing growth

by Pauline Torongo
26 November 2025
Design Australia Group: Redefining Drafting as the engine of housing growth
Business & Finance

Australia is under pressure to build homes faster, but design bottlenecks slow progress. Design Australia Group is fixing this by...

Read moreDetails

Louis Guy Detata builds Global Trading Empires through autonomous systems and disciplined leadership

by Pauline Torongo
25 November 2025
Louis Guy Detata builds Global Trading Empires through autonomous systems and disciplined leadership
Business & Finance

The path from investment banking to leading a global trading platform has taught Louis Detata that sustainable success requires more...

Read moreDetails

Burning Eucalyptus Wood: Tips, Advantages, Disadvantages & Alternatives

by Fazila Olla-Logday
20 November 2025
Image Supplied
Enviroment

Learn about burning eucalyptus wood for stoves and fireplaces. Discover benefits, drawbacks, harvesting tips, and better alternative firewood options for...

Read moreDetails

Everything Parents Need to Know About Baby Soft Play and Why It’s a Game Changer

by Fazila Olla-Logday
11 November 2025
Everything Parents Need to Know About Baby Soft Play
Health & Wellness

Baby soft play is a fun, safe, and educational way for little ones to explore and grow. Discover the benefits...

Read moreDetails

WOMAD Sets Up a New Camp in Wiltshire – Australian festival fans take note!

by Kris Griffiths
11 November 2025
Kumbia Boruka brought their reggae and dancehall flavour to the Taste the World Stage at WOMAD 2024 - Credit - Mike Massaro
Entertainment

With its 2026 edition moving to Neston Park in England, WOMAD offers Aussie music lovers a chance to reconnect with global...

Read moreDetails
Load More

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

  • About us
  • Write for Us
  • Advertise
  • Contact us
  • T&Cs, Privacy and GDPR
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status