• Advertise
  • About us
  • Terms and Conditions
  • Contact us
Friday, February 6, 2026
Australian Times News
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
Australian Times News
No Result
View All Result
Home News

Medical oxygen should not be a luxury – we’re trying to develop a cheaper way to produce it

People might once have considered oxygen a human right. But the pandemic has revealed that access to oxygen – in a pure form, for medical use – is a luxury in most low and middle-income countries.

The Conversation by The Conversation
03-05-2021 18:07
in News
Photo by Arseny Togulev on Unsplash

Photo by Arseny Togulev on Unsplash

David Fairen-Jimenez, University of Cambridge

People might once have considered oxygen a human right. But the pandemic has revealed that access to oxygen – in a pure form, for medical use – is a luxury in most low and middle-income countries.

Getting access to pure oxygen for medical treatments is a complicated, expensive and often very dangerous business. The current situation in India is a harsh reminder of this issue. The second wave of COVID-19 has hit the country hard, the total number of deaths has just passed the 200,000 mark. Oxygen is in short supply.

Because of the current emergency, Indian citizens have turned to the black market to purchase oxygen way above its regular price.

This has happened partly due to the way oxygen is produced, stored and transported around the world. That’s why scientists like me are working to find a cheaper alternative.

Bottlenecks

Oxygen is mostly obtained from liquefied air. Engineers turn the air we breathe into a liquid, using a combination of processes that cool down gases until they condensate. Once they’ve managed to liquefy the mix, they use distillation – the same process used to make whisky and gin – to separate air into its different components, oxygen among them.

This process requires enormous amounts of energy and huge industrial facilities, so it’s limited to just a few areas in the world, most of them in the global north. Liquid oxygen must be stored and transported under great pressure, creating serious logistical issues and safety concerns – oxygen is really explosive.

AlsoRead...

Brandon Willington: The Marketing Entrepreneur turning heads across Australia

Brandon Willington: The Marketing Entrepreneur Turning Heads Across Australia

8 January 2026
How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment

How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment

17 December 2025

This means the main bottleneck of oxygen production is, precisely, bottles. The US relies on heavy-duty pipes to transport pressurised oxygen. In Europe, transport is mainly through liquid oxygen carried in big tanks. For lower-income countries, distribution is done in bottles.

But the oxygen bottle market is cornered by only a handful of chemical companies. Using bottles also adds another layer of safety concerns, as handling them correctly requires several precautionary measures and proper training. Developing countries therefore lack both the infrastructure required to produce liquid oxygen and that to easily and cheaply transport it to a hospital.

Out of thin air

Another way of “making” oxygen is using concentrators, devices that selectively remove nitrogen – the gas that makes up 78% of our atmosphere – using a series of membranes, porous materials and filters. These started being produced in mid-70s, and the technology is very well established.

These devices turn air into a stream of oxygen-enriched gas, typically above 95% (the rest is formed of mostly argon). This is usually good enough for respirators and ventilators. The benefit of a concentrator is it can be produced as a small device to be used in hospitals or care homes. Commercially available concentrators exist now, but they are expensive and difficult to produce in developing countries.

This is why scientists like me are looking for solutions. My team studies new types of materials that store and separate gases, some of which provide potentially affordable solutions for devices such as oxygen concentrators. We develop two main types of materials – zeolites (crystals of silicon, aluminium and oxygen) and metal-organic frameworks (usually called MOFs). Both are highly porous materials; you can imagine them as miniature, molecule-sized sponges.

Like sponges, these porous materials adsorb more fluids than you’d intuitively imagine. Although the millions of pores inside zeolites and MOFs may seem tiny, their total surface area is monumental. In fact, one gram of certain record-breaking MOFs feature a surface area of over 7,000 square metres.

Tiny amounts of zeolites and MOFs can store huge amounts of fluids, often gases, and they have been used in gas storage, purification, carbon capture and water-harvesting.

Some of my team, partnering with the engineering company Cambridge Precision, and the Centre for Global Equality, have started looking into whether they can be used to store oxygen. We’ve developed an initial prototype that works. We hope to have a final prototype in place in two months time, and after this we will need to seek medical approval.


The process

The principle is quite simple. We have an aluminium cylinder full of porous materials and we circulate a stream of air through it. This purifies the oxygen up to 95% – with the remaining being mostly argon. Nitrogen is trapped in the zeolite because of the way the electric charge is distributed in nitrogen atoms, meaning it interacts more strongly with the zeolite’s electric field. Oxygen and argon are not.

The nitrogen therefore stays trapped inside the millions of tiny pores, and we empty them later after storing our oxygen.

Usually, we commercialise our porous materials through Immaterial, a spin-out of the University of Cambridge. Yet, making huge profits selling oxygen in a pandemic seemed immoral. In Africa, for example, oxygen is five times more expensive than in Europe and the US. Our team and Immaterial therefore partnered up with other scientists in Cambridge to create the Oxygen and Ventilator System Initiative, OVSI, with the aim of advancing and manufacturing affordable oxygen treatments.

We hope the advantages of a cheap oxygen concentrator device will outlive the pandemic. Oxygen supply is key to treat childhood pneumonia and chronic pulmonary diseases – both conditions that globally kill more people than AIDS or malaria. Everyone should have access to oxygen, and technology like ours could one day help provide that access.

David Fairen-Jimenez, Reader in Molecular Engineering, University of Cambridge

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tags: SB001
DMCA.com Protection Status

SUBSCRIBE to our NEWSLETTER

[mc4wp_form id=”2384248″]

Don't Miss

Lyca Mobile Australia’s Customer-First Overhaul Pays Off with Finder Award Win

by Fazila Olla-Logday
2 February 2026
Lyca Mobile Australia's Customer-First Overhaul Pays Off with Finder Award Win
Technology

Lyca Mobile Australia’s customer-first overhaul has earned a Finder Award, recognising its improved value, service, and stronger focus on Australian...

Read moreDetails

From Driveway to Dream Court: The Rise of High-Performance Hoops at Home in 2026

by Fazila Olla-Logday
20 January 2026
The Rise of High-Performance Hoops at Home in 2026
Sport

High-performance home basketball hoops are gaining momentum in 2026, as more homeowners invest in durable, professional-grade systems that combine advanced...

Read moreDetails

Brandon Willington: The Marketing Entrepreneur Turning Heads Across Australia

by Pauline Torongo
8 January 2026
Brandon Willington: The Marketing Entrepreneur turning heads across Australia
Business & Finance

Brandon Willington, founder of “Where U?” is changing the narrative for Australian businesses tired of inconsistent leads and empty promises.

Read moreDetails

How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment

by Fazila Olla-Logday
17 December 2025
How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment
Business & Finance

Turnkey Building Group is changing the narrative in an industry often associated with missed deadlines and broken promises. By prioritizing...

Read moreDetails

Risk Awareness for International Travellers – What Australians Should Know Before Entering Multi-State Regions

by Fazila Olla-Logday
10 December 2025
Schengen
Travel

This guide helps Australian travellers understand cross-border requirements, assess political and environmental risks, manage health and safety considerations, and prepare...

Read moreDetails

The evolution of Aesthetic Surgery through the lens of Dr Kourosh Tavakoli

by Pauline Torongo
4 December 2025
The evolution of Aesthetic Surgery through the lens of Dr. Kourosh Tavakoli
Health & Wellness

As global interest in Australian cosmetic surgery continues to grow, the combination of regulation, research and emerging digital tools is...

Read moreDetails

Ryan: Building real freedom through e-commerce

by Pauline Torongo
27 November 2025
Ryan: Building real freedom through e-commerce
Business & Finance

Ryan’s greatest achievement isn’t any single business or revenue milestone — it’s the ecosystem he’s built through the Change community.

Read moreDetails
Load More

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

  • About us
  • Write for Us
  • Advertise
  • Contact us
  • T&Cs, Privacy and GDPR
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status