• Advertise
  • About us
  • Terms and Conditions
  • Contact us
Saturday, December 6, 2025
Australian Times News
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
Australian Times News
No Result
View All Result
Home News

Medical oxygen should not be a luxury – we’re trying to develop a cheaper way to produce it

People might once have considered oxygen a human right. But the pandemic has revealed that access to oxygen – in a pure form, for medical use – is a luxury in most low and middle-income countries.

The Conversation by The Conversation
03-05-2021 18:07
in News
Photo by Arseny Togulev on Unsplash

Photo by Arseny Togulev on Unsplash

David Fairen-Jimenez, University of Cambridge

People might once have considered oxygen a human right. But the pandemic has revealed that access to oxygen – in a pure form, for medical use – is a luxury in most low and middle-income countries.

Getting access to pure oxygen for medical treatments is a complicated, expensive and often very dangerous business. The current situation in India is a harsh reminder of this issue. The second wave of COVID-19 has hit the country hard, the total number of deaths has just passed the 200,000 mark. Oxygen is in short supply.

Because of the current emergency, Indian citizens have turned to the black market to purchase oxygen way above its regular price.

This has happened partly due to the way oxygen is produced, stored and transported around the world. That’s why scientists like me are working to find a cheaper alternative.

Bottlenecks

Oxygen is mostly obtained from liquefied air. Engineers turn the air we breathe into a liquid, using a combination of processes that cool down gases until they condensate. Once they’ve managed to liquefy the mix, they use distillation – the same process used to make whisky and gin – to separate air into its different components, oxygen among them.

This process requires enormous amounts of energy and huge industrial facilities, so it’s limited to just a few areas in the world, most of them in the global north. Liquid oxygen must be stored and transported under great pressure, creating serious logistical issues and safety concerns – oxygen is really explosive.

AlsoRead...

Ryan: Building real freedom through e-commerce

Ryan: Building real freedom through e-commerce

27 November 2025
Design Australia Group: Redefining Drafting as the engine of housing growth

Design Australia Group: Redefining Drafting as the engine of housing growth

26 November 2025

This means the main bottleneck of oxygen production is, precisely, bottles. The US relies on heavy-duty pipes to transport pressurised oxygen. In Europe, transport is mainly through liquid oxygen carried in big tanks. For lower-income countries, distribution is done in bottles.

But the oxygen bottle market is cornered by only a handful of chemical companies. Using bottles also adds another layer of safety concerns, as handling them correctly requires several precautionary measures and proper training. Developing countries therefore lack both the infrastructure required to produce liquid oxygen and that to easily and cheaply transport it to a hospital.

Out of thin air

Another way of “making” oxygen is using concentrators, devices that selectively remove nitrogen – the gas that makes up 78% of our atmosphere – using a series of membranes, porous materials and filters. These started being produced in mid-70s, and the technology is very well established.

These devices turn air into a stream of oxygen-enriched gas, typically above 95% (the rest is formed of mostly argon). This is usually good enough for respirators and ventilators. The benefit of a concentrator is it can be produced as a small device to be used in hospitals or care homes. Commercially available concentrators exist now, but they are expensive and difficult to produce in developing countries.

This is why scientists like me are looking for solutions. My team studies new types of materials that store and separate gases, some of which provide potentially affordable solutions for devices such as oxygen concentrators. We develop two main types of materials – zeolites (crystals of silicon, aluminium and oxygen) and metal-organic frameworks (usually called MOFs). Both are highly porous materials; you can imagine them as miniature, molecule-sized sponges.

Like sponges, these porous materials adsorb more fluids than you’d intuitively imagine. Although the millions of pores inside zeolites and MOFs may seem tiny, their total surface area is monumental. In fact, one gram of certain record-breaking MOFs feature a surface area of over 7,000 square metres.

Tiny amounts of zeolites and MOFs can store huge amounts of fluids, often gases, and they have been used in gas storage, purification, carbon capture and water-harvesting.

Some of my team, partnering with the engineering company Cambridge Precision, and the Centre for Global Equality, have started looking into whether they can be used to store oxygen. We’ve developed an initial prototype that works. We hope to have a final prototype in place in two months time, and after this we will need to seek medical approval.


The process

The principle is quite simple. We have an aluminium cylinder full of porous materials and we circulate a stream of air through it. This purifies the oxygen up to 95% – with the remaining being mostly argon. Nitrogen is trapped in the zeolite because of the way the electric charge is distributed in nitrogen atoms, meaning it interacts more strongly with the zeolite’s electric field. Oxygen and argon are not.

The nitrogen therefore stays trapped inside the millions of tiny pores, and we empty them later after storing our oxygen.

Usually, we commercialise our porous materials through Immaterial, a spin-out of the University of Cambridge. Yet, making huge profits selling oxygen in a pandemic seemed immoral. In Africa, for example, oxygen is five times more expensive than in Europe and the US. Our team and Immaterial therefore partnered up with other scientists in Cambridge to create the Oxygen and Ventilator System Initiative, OVSI, with the aim of advancing and manufacturing affordable oxygen treatments.

We hope the advantages of a cheap oxygen concentrator device will outlive the pandemic. Oxygen supply is key to treat childhood pneumonia and chronic pulmonary diseases – both conditions that globally kill more people than AIDS or malaria. Everyone should have access to oxygen, and technology like ours could one day help provide that access.

David Fairen-Jimenez, Reader in Molecular Engineering, University of Cambridge

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tags: SB001
DMCA.com Protection Status

SUBSCRIBE to our NEWSLETTER

[mc4wp_form id=”2384248″]

Don't Miss

The evolution of Aesthetic Surgery through the lens of Dr Kourosh Tavakoli

by Pauline Torongo
4 December 2025
The evolution of Aesthetic Surgery through the lens of Dr. Kourosh Tavakoli
Health & Wellness

As global interest in Australian cosmetic surgery continues to grow, the combination of regulation, research and emerging digital tools is...

Read moreDetails

Ryan: Building real freedom through e-commerce

by Pauline Torongo
27 November 2025
Ryan: Building real freedom through e-commerce
Business & Finance

Ryan’s greatest achievement isn’t any single business or revenue milestone — it’s the ecosystem he’s built through the Change community.

Read moreDetails

Design Australia Group: Redefining Drafting as the engine of housing growth

by Pauline Torongo
26 November 2025
Design Australia Group: Redefining Drafting as the engine of housing growth
Business & Finance

Australia is under pressure to build homes faster, but design bottlenecks slow progress. Design Australia Group is fixing this by...

Read moreDetails

Louis Guy Detata builds Global Trading Empires through autonomous systems and disciplined leadership

by Pauline Torongo
25 November 2025
Louis Guy Detata builds Global Trading Empires through autonomous systems and disciplined leadership
Business & Finance

The path from investment banking to leading a global trading platform has taught Louis Detata that sustainable success requires more...

Read moreDetails

Burning Eucalyptus Wood: Tips, Advantages, Disadvantages & Alternatives

by Fazila Olla-Logday
20 November 2025
Image Supplied
Enviroment

Learn about burning eucalyptus wood for stoves and fireplaces. Discover benefits, drawbacks, harvesting tips, and better alternative firewood options for...

Read moreDetails

Everything Parents Need to Know About Baby Soft Play and Why It’s a Game Changer

by Fazila Olla-Logday
11 November 2025
Everything Parents Need to Know About Baby Soft Play
Health & Wellness

Baby soft play is a fun, safe, and educational way for little ones to explore and grow. Discover the benefits...

Read moreDetails

WOMAD Sets Up a New Camp in Wiltshire – Australian festival fans take note!

by Kris Griffiths
11 November 2025
Kumbia Boruka brought their reggae and dancehall flavour to the Taste the World Stage at WOMAD 2024 - Credit - Mike Massaro
Entertainment

With its 2026 edition moving to Neston Park in England, WOMAD offers Aussie music lovers a chance to reconnect with global...

Read moreDetails
Load More

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

  • About us
  • Write for Us
  • Advertise
  • Contact us
  • T&Cs, Privacy and GDPR
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status