• Advertise
  • About us
  • Terms and Conditions
  • Contact us
Sunday, December 21, 2025
Australian Times News
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia
No Result
View All Result
Australian Times News
No Result
View All Result
Home News

Four ways microbial fuel cells might revolutionise electricity production in the future

The world population is estimated to reach 9.5 billion by 2050. Given that most of our current energy is generated from fossil fuels, this creates significant challenges when it comes to providing enough sustainable electricity while mitigating climate change.

The Conversation by The Conversation
24-12-2020 22:25
in News
Generating electricity using bacteria

Generating electricity using bacteria Photo by Federico Beccari on Unsplash

Godfrey Kyazze, University of Westminster

The world population is estimated to reach 9.5 billion by 2050. Given that most of our current energy is generated from fossil fuels, this creates significant challenges when it comes to providing enough sustainable electricity while mitigating climate change.

Jackie Niam/Shutterstock

One idea that has gained traction over recent years is generating electricity using bacteria in devices called microbial fuel cells (MFCs). These fuel cells rely on the ability of certain naturally occurring microorganisms that have the ability to “breathe” metals, exchanging electrons to create electricity. This process can be fuelled using substances called substrates, which include organic materials found in wastewater.

At the moment microbial fuel cells are able to generate electricity to power small devices such as calculators, small fans and LEDs – in our lab we powered the lights on a mini Christmas tree using “simulated wastewater”. But if the technology is scaled up, it holds great promise.

How they work

MFCs use a system of anodes and cathodes – electrodes that pass a current either in or out. Common MFC systems consist of an anode chamber and a cathode chamber separated by a membrane. The bacteria grow on the anode and convert the substrates into carbon dioxide, protons and electrons.

The electrons that are produced are then transferred via an external circuit to the cathode chamber, while the protons pass through the membrane. In the cathode chamber, a reaction between the protons and the electrons uses up oxygen and forms water. And as long as substrates are continually converted, electrons will flow – which is what electricity is.

Generating electricity through MFCs has a number of advantages: systems can be set up anywhere; they create less “sludge” than conventional methods of wastewater treatment such as activated sludge systems; they can be small-scale yet a modular design can be used to build bigger systems; they have a high tolerance to salinity; and they can operate at room temperature.

AlsoRead...

How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment

How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment

17 December 2025
Ryan: Building real freedom through e-commerce

Ryan: Building real freedom through e-commerce

27 November 2025

The availability of a wide range of renewable substrates that can be used to generate electricity in MFCs has the potential to revolutionise electricity production in the future. Such substrates include urine, organic matter in wastewater, substances secreted by living plants into the soil (root exudates), inorganic wastes like sulphides and even gaseous pollutants.

1. Pee power

Biodegradable matter in waste materials such as faeces and urine can be converted into electricity. This was demonstrated in a microbial fuel cell latrine in Ghana, which suggested that toilets could in future be potential power stations. The latrine, which was operated for two years, was able to generate 268 nW/m² of electricity, enough to power an LED light inside the latrine, while removing nitrogen from urine and composting the faeces.

Schematic of an MFC latrine. Cynthia Castro et al. Journal of Water, Sanitation and Hygiene for Development, 2014.

For locations with no grid electricity or for refugee camps, the use of waste in latrines to produce electricity could truly be revolutionary.

2. Plant MFCs

Another renewable and sustainable substrate that MFCs could use to generate electricity is plant root exudates, in what are called plant MFCs. When plants grow they produce carbohydrates such as glucose, some of which are exuded into the root system. The microorganisms near the roots convert the carbohydrates into protons, electrons and carbon dioxide.

In a plant MFC, the protons are transferred through a membrane and recombine with oxygen to complete the circuit of electron transfer. By connecting a load into the circuitry, the electricity being generated can be harnessed.

Plant MFCs could revolutionise electricity production in isolated communities that have no access to the grid. In towns, streets could be lit using trees.

3. Microbial desalination cells

Another variation of microbial fuel cells are microbial desalination cells. These devices use bacteria to generate electricity, for example from wastewater, while simultaneously desalinating water. The water to be desalinated is put in a chamber sandwiched between the anode and cathode chambers of MFCs using membranes of negatively (anion) and positively (cation) charged ions.

When the bacteria in the anode chamber consume the wastewater, protons are released. These protons cannot pass through the anion membrane, so negative ions move from the salty water into the anode chamber. At the cathode protons are consumed, so positively charged ions move from the salty water to the cathode chamber, desalinating the water in the middle chamber. Ions released in the anode and cathode chambers help to improve the efficiency of electricity generation.

Conventional water desalination is currently very energy intensive and hence costly. A process that achieves desalination on a large scale while producing (not consuming) electricity would be revolutionary.

Desalination plant in Hamburg. Current desalination technology is very energy intensive. Andrea Izzotti/Shutterstock

4. Improving the yield of natural gas

Anaerobic digestion – where microorganisms are used to break down biodegradable or waste matter without needing oxygen – is used to recover energy from wastewater by producing biogas that is mostly methane – the main ingredient of natural gas. But this process is usually inefficient.

Research suggests that the microbial groups used within these digesters share electrons – what has been dubbed interspecies electron transfer – opening up the possibility that they could use positive energy to influence their metabolism.

By supplying a small voltage to anaerobic digesters – a process called electromethanogenesis – the methane yield (and hence the electricity that could be recovered from combined heat and power plants) can be significantly improved.

While microbial fuel cells are able to generate electricity to power small devices, researchers are investigating ways to scale up the reactors to increase the amount of power they can generate, and to further understand how extracellular electron transfer works. A few start-up companies such as Robial and Plant-e are beginning to commercialise microbial fuel cells. In the future, microbial fuel cells could even be used to generate electricity in regenerative life support systems during long-term human space missions. It’s early days but the technology holds much promise.

Godfrey Kyazze, Reader in Bioprocess Technology, University of Westminster

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tags: SB001
DMCA.com Protection Status

SUBSCRIBE to our NEWSLETTER

[mc4wp_form id=”2384248″]

Don't Miss

How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment

by Fazila Olla-Logday
17 December 2025
How Turnkey Building Group Is Restoring Trust In An Industry Known For Customer Disappointment
Business & Finance

Turnkey Building Group is changing the narrative in an industry often associated with missed deadlines and broken promises. By prioritizing...

Read moreDetails

Risk Awareness for International Travellers – What Australians Should Know Before Entering Multi-State Regions

by Fazila Olla-Logday
10 December 2025
Schengen
Travel

This guide helps Australian travellers understand cross-border requirements, assess political and environmental risks, manage health and safety considerations, and prepare...

Read moreDetails

The evolution of Aesthetic Surgery through the lens of Dr Kourosh Tavakoli

by Pauline Torongo
4 December 2025
The evolution of Aesthetic Surgery through the lens of Dr. Kourosh Tavakoli
Health & Wellness

As global interest in Australian cosmetic surgery continues to grow, the combination of regulation, research and emerging digital tools is...

Read moreDetails

Ryan: Building real freedom through e-commerce

by Pauline Torongo
27 November 2025
Ryan: Building real freedom through e-commerce
Business & Finance

Ryan’s greatest achievement isn’t any single business or revenue milestone — it’s the ecosystem he’s built through the Change community.

Read moreDetails

Design Australia Group: Redefining Drafting as the engine of housing growth

by Pauline Torongo
26 November 2025
Design Australia Group: Redefining Drafting as the engine of housing growth
Business & Finance

Australia is under pressure to build homes faster, but design bottlenecks slow progress. Design Australia Group is fixing this by...

Read moreDetails

Louis Guy Detata builds Global Trading Empires through autonomous systems and disciplined leadership

by Pauline Torongo
25 November 2025
Louis Guy Detata builds Global Trading Empires through autonomous systems and disciplined leadership
Business & Finance

The path from investment banking to leading a global trading platform has taught Louis Detata that sustainable success requires more...

Read moreDetails

Burning Eucalyptus Wood: Tips, Advantages, Disadvantages & Alternatives

by Fazila Olla-Logday
20 November 2025
Image Supplied
Enviroment

Learn about burning eucalyptus wood for stoves and fireplaces. Discover benefits, drawbacks, harvesting tips, and better alternative firewood options for...

Read moreDetails
Load More

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

  • About us
  • Write for Us
  • Advertise
  • Contact us
  • T&Cs, Privacy and GDPR
No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status

No Result
View All Result
  • News
    • Weather
    • Sport
    • Technology
    • Business & Finance
      • Currency Zone
    • Lotto Results
      • The Lott
  • Lifestyle
    • Entertainment
    • Horoscopes
    • Health & Wellness
    • Recipes
  • Travel
  • Expat Life
  • Move to Australia

Copyright © Blue Sky Publications Ltd. All Rights Reserved.
australiantimes.co.uk is a division of Blue Sky Publications Ltd. Reproduction without permission prohibited. DMCA.com Protection Status